By Topic

Electrothermal prediction model of Cu low k interconnection on glass substrate

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Siegert, L. ; ST Microelectron. Tours R&D, Tours, France ; Fiannaca, G. ; Roqueta, F. ; Gautier, G.
more authors

The aim of this work is to determine a joule heating prediction model for thick copper/Low-k interconnects on glass substrate technology. Experiments and simulations have been used to define thermal conductivities of our stack material from thermal resistance study. In a second time, the thermal resistance is used as quantitative response to predict the joule temperature in the strip. The experimental Rthermic results are well fit with a quadratic model which combined with the thermal coefficient of resistance formalism; allow us to define an analytical temperature joule heating formula. This methodology to define an analytical joule heating formula can be widely used to determine the maximum operating conditions and can be implemented in design rules manuals.

Published in:

Thermal, Mechanical and Multi-Physics Simulation and Experiments in Microelectronics and Microsystems (EuroSimE), 2011 12th International Conference on

Date of Conference:

18-20 April 2011