By Topic

A Unified Framework for Quadratic Measures of Independence

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Sohan Seth ; Department of Electrical and Computer Engineering, University of Florida, Gainesville, FL, USA ; Murali Rao ; Il Park ; José C. Principe

This paper proposes a unified framework for several available measures of independence by generalizing the concept of information theoretic learning (ITL). The key component of ITL is the use of inner product between two density functions as a measure of similarity between two random variables. We show that by generalizing the inner product using a symmetric strictly positive-definite kernel and by choosing appropriate kernels, it is possible to reproduce a number of popular measures of independence. This unified framework also allows the design of new strictly positive-definite kernels and corresponding measures of independence. Following this framework we explore a new measure of independence and apply it in the context of linear independent component analysis (ICA). An attractive property of the proposed method is that it does not involve any free parameter and we demonstrate that it performs equally well compared to the existing methods for ICA.

Published in:

IEEE Transactions on Signal Processing  (Volume:59 ,  Issue: 8 )