Cart (Loading....) | Create Account
Close category search window
 

Leader Following of Nonlinear Agents With Switching Connective Network and Coupling Delay

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Qiang Jia ; Dept. of Electron. Eng., City Univ. of Hong Kong, Kowloon, China ; Tang, W.K.S. ; Halang, W.A.

This work considers the leader-following problem of a network of agents with nonlinear dynamics. To reflect a more practical case, the network topology is assumed to be arbitrarily switching among a finite set of topologies and the time-varying delay exists in the coupling of agents. Based on the common Lyapunov function theory, sufficient conditions for the asymptotical stability of this multiagent system are derived, which in turns, can be managed by the linear matrix inequality method. A sufficient stability condition is derived to provide a tight condition for stability, applicable for networks with considerable sizes. On the other hand, when a multitude of agents is involved, a comparative conservative but efficient criterion is also proposed. Both criteria only demand on low dimensional matrices, which are independent of the network size. Moreover, some simple stability criteria for the cases without coupling delay are also established. A simple optimization scheme is also formulated to determine the largest allowable delay. Finally, numerical simulations are provided to illustrate the feasibility and effectiveness of the obtained theoretical results.

Published in:

Circuits and Systems I: Regular Papers, IEEE Transactions on  (Volume:58 ,  Issue: 10 )

Date of Publication:

Oct. 2011

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.