By Topic

Stability and Dynamic Performance Improvement of Adaptive Full-Order Observers for Sensorless PMSM Drive

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Po-ngam, S. ; Dept. of Electr. Eng., Chulalongkorn Univ., Bangkok, Thailand ; Sangwongwanich, S.

Stability and good dynamic performances of adaptive full-order observers are of utmost importance for the sensorless PMSM drive. In this paper, to accomplish both requirements, the analytical stability conditions are firstly derived to provide a general framework for the feedback gain design. Closed-form solutions of the stabilizing feedback gains are consequently given, and are used in the zero and pole placement design to obtain an adequate and constant damping factor along with the stability at all operating frequencies. New design rules for the adaptation of PI gains to satisfy the required performances are also proposed. The robustness of the adaptive full-order observer against stator resistance and inductance variations is also investigated. Validity of the designed sensorless control is confirmed by simulation and experiment.

Published in:

Power Electronics, IEEE Transactions on  (Volume:27 ,  Issue: 2 )