By Topic

Strong Coupling of Electromagnetic Transients and Finite Element Magnetic Field Solvers

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Melgoza, E. ; Inst. Tecnol. de Morelia, Morelia, Mexico ; Cruz, C.A. ; Venegas, V. ; Escarela-Perez, R.
more authors

Magnetic devices such as transformers and rotating electrical machines are key components of modern power systems and the simulation of transient events involving them is fundamental. In this paper, a method for strongly coupling a power systems transients program with a finite element field solver is proposed, which eliminates the time step delay in the solution of the two separate domains, and therefore avoids the instability which otherwise could arise. The field model provides an accurate computation of the magnetic field distribution in the device, taking into account the ferromagnetic core nonlinearity and spatial effects, while the electrical network is represented by a circuit model. The transients program used for the coupling is the Alternative Transients Program (ATP), and the field solver is FLD. The simulation scheme and its implementation have been verified by comparison with a directly coupled circuit-field solver.

Published in:

Magnetics, IEEE Transactions on  (Volume:47 ,  Issue: 11 )