By Topic

Parallel Operation of DFIGs in Three-Phase Four-Wire Autonomous Wind Energy Conversion System

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Goel, P.K. ; Rural Electrification Corp., New Delhi, India ; Singh, B. ; Murthy, S.S. ; Kishore, N.

This paper deals with a control algorithm for two parallel-operated doubly fed induction generators (DFIGs) driven by wind turbines in a three-phase four-wire autonomous system feeding local loads. The proposed autonomous wind energy conversion system (AWECS) is using back-to-back-connected pulsewidth-modulated insulated-gate-bipolar-transistor-based voltage source converters with a battery energy storage system at their dc link. The system utilizes separate rotor-side converters for each DFIG for maximum power tracking (MPT) through its rotor speed control. However, a common dc bus and a battery bank and stator-side converter are used for voltage and frequency control at the stator terminals of the DFIGs. A delta-star transformer is connected between the stator-side converter and the stator terminals of DFIGs for optimizing the voltage of dc bus, and the load-side neutral is connected to the neutral of the star side of the transformer. The proposed electromechanical system is modeled and simulated in MATLAB using Simulink and Sim Power Systems set toolboxes. The performance of the proposed AWECS is presented to demonstrate its capability of MPT, stator voltage and frequency control, harmonic elimination, load balancing, and load leveling.

Published in:

Industry Applications, IEEE Transactions on  (Volume:47 ,  Issue: 4 )