By Topic

Efficient Computation of the Off-Diagonal Elements of the Vector-Potential Multilayered Periodic Dyadic Green's Function

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Fructos, A.L. ; Dept. of Electron. & Electromagn., Univ. of Seville, Seville, Spain ; Boix, R.R. ; Mesa, F.

The authors focus on the efficient computation of the slowly convergent infinite series that lead to the off-diagonal elements of the vector potential multilayered periodic dyadic Green's function. Two different approaches based on Kummer's transformation are applied to the evaluation of these series. The well-known approach that makes use of the generalized pencil of functions (GPoF) and Ewald's method is the fastest approach, but it does not provide accurate results when the distance between the field point and any of the source points is close to zero. To avoid this problem, we present a novel approach based on the GPoF and the spectral Kummer-Poisson's method with higher-order asymptotic extraction. This latter approach is slightly slower than the former one, but it is accurate in the whole range of distances between the field point and the sources.

Published in:

Antennas and Propagation, IEEE Transactions on  (Volume:59 ,  Issue: 7 )