By Topic

Linear Least Squares Approach for Accurate Received Signal Strength Based Source Localization

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Hing Cheung So ; Department of Electronic Engineering, City University of Hong Kong, Kowloon, Hong Kong ; Lanxin Lin

A conventional approach for passive source localization is to utilize signal strength measurements of the emitted source received at an array of spatially separated sensors. The received signal strength (RSS) information can be converted to distance estimates for constructing a set of circular equations, from which the target position is determined. Nevertheless, a major challenge in this approach lies in the shadow fading effect which corresponds to multiplicative measurement errors. By utilizing the mean and variance of the squared distance estimates, we devise two linear least squares (LLS) estimators for RSS-based positioning in this paper. The first one is a best linear unbiased estimator while the second is its improved version by exploiting the known relation between the parameter estimates. The variances of the position estimates are derived and confirmed by computer simulations. In particular, it is proved that the performance of the improved LLS estimator achieves Cramér-Rao lower bound at sufficiently small noise conditions.

Published in:

IEEE Transactions on Signal Processing  (Volume:59 ,  Issue: 8 )