By Topic

Image Quality Assessment by Separately Evaluating Detail Losses and Additive Impairments

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Songnan Li ; Dept. of Electron. Eng., Chinese Univ. of Hong Kong, Hong Kong, China ; Fan Zhang ; Lin Ma ; King Ngi Ngan

In the research field of image processing, mean squared error (MSE) and peak signal-to-noise ratio (PSNR) are extensively adopted as the objective visual quality metrics, mainly because of their simplicity for calculation and optimization. However, it has been well recognized that these pixel-based difference measures correlate poorly with the human perception. Inspired by existing works , in this paper we propose a novel algorithm which separately evaluates detail losses and additive impairments for image quality assessment. The detail loss refers to the loss of useful visual information which affects the content visibility, and the additive impairment represents the redundant visual information whose appearance in the test image will distract viewer's attention from the useful contents causing unpleasant viewing experience. To separate detail losses and additive impairments, a wavelet-domain decoupling algorithm is developed which can be used for a host of distortion types. Two HVS characteristics, i.e., the contrast sensitivity function and the contrast masking effect, are taken into account to approximate the HVS sensitivities. We propose two simple quality measures to correlate detail losses and additive impairments with visual quality, respectively. Based on the findings in that observers judge low-quality images in terms of the ability to interpret the content, the outputs of the two quality measures are adaptively combined to yield the overall quality index. By conducting experiments based on five subjectively-rated image databases, we demonstrate that the proposed metric has a better or similar performance in matching subjective ratings when compared with the state-of-the-art image quality metrics.

Published in:

Multimedia, IEEE Transactions on  (Volume:13 ,  Issue: 5 )