By Topic

Eigenmode-Based Capacitance Calculations With Applications in Passivation Layer Design

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Demeester, T. ; Dept. of Inf. Technol., Ghent Univ., Ghent, Belgium ; De Zutter, D.

The design of high-speed metallic interconnects such as microstrips requires the correct characterization of both the conductors and the surrounding dielectric environment, in order to accurately predict their propagation characteristics. A fast boundary integral equation approach is obtained by modeling all materials as equivalent surface charge densities in free space. The capacitive behavior of a finite dielectric environment can then be determined by means of a transformation matrix, relating these charge densities to the boundary value of the electric potential. In this paper, a new calculation method is presented for the important case that the dielectric environment is composed of homogeneous rectangles. The method, based on a surface charge expansion in terms of the Robin eigenfunctions of the considered rectangles, is not only more efficient than traditional methods, but is also more accurate, as shown in some numerical experiments. As an application, the design and behavior of a microstrip passivation layer is treated in some detail.

Published in:

Components, Packaging and Manufacturing Technology, IEEE Transactions on  (Volume:1 ,  Issue: 6 )