By Topic

RF-MEMS Uniplanar 180 ^{\circ} Phase Switch Based on a Multimodal Air-Bridged CPW Cross

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

6 Author(s)

In this paper, a new compact broadband uniplanar 180° phase switch, based on an air-bridged coplanar-waveguide (CPW) cross loaded with two capacitive-contact microelectromechancial systems (MEMS) switches in opposed (on/off) states, is presented. The two phase-switch states (0°/180°) are defined by actuating the MEMS switches from on/off to off/on. The asymmetry in the states of the MEMS switches results in a complex multimodal interaction between the two fundamental even and odd CPW modes at the air-bridged cross. Using the multimodal theory, the phase switch is analyzed, its frequency-in dependent 180°-phase-shift properties are proven, and a set of design equations for perfect port matching are derived. A multi modal circuit model for the phase switch is then presented, and design equations and conditions for compact phase switches are derived. Finally, a very compact phase switch is designed and fabricated using an eight-mask surface micromachining process, featuring a measured phase shift of 180° ± 1.8° in a very wide frequency range (1-30 GHz) and an insertion loss better than 2.1 dB in the design band (10-20 GHz). Experimental results are in very good agreement with electromagnetic and multimodal circuit simulations, thus validating the proposed approach and design procedure.

Published in:

IEEE Transactions on Microwave Theory and Techniques  (Volume:59 ,  Issue: 7 )