By Topic

3D Polarized Channel Modeling and Performance Comparison of MIMO Antenna Configurations With Different Polarizations

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Manh-Tuan Dao ; Electr. Eng. Dept., Korean Adv. Inst. of Sci. & Technol. (KAIST), Daejeon, South Korea ; Viet-Anh Nguyen ; Yun-Taek Im ; Seong-Ook Park
more authors

We propose a three-dimensional (3D) polarized MIMO channel model, which takes into account 3D power angular spectrum and comprehensive propagation characteristics of electromagnetic waves excited by polarized antennas. Based on the model, we derive a close form expression of the spatial correlation as a function of the physical parameters representing both characteristics of arbitrary antennas and propagation environment in 3D space. The spatial correlation expression allows to use the Von Mises Fisher (VMF) distribution, resulting in a more accurate and general channel model. Through simulation, we evaluate and compare performance, in terms of the spatial correlation and capacity, of 2 × 2 MIMO configurations with different polarizations, i.e., V/V, V/H, and slanted ±45° polarizations, as a function of critical input parameters including elevation angle, antenna orientation, antenna spacing, cross-polarization discrimination (XPD), and signal-to-noise ratio (SNR). The effect of the parameters on the performance is analyzed, and verified in certain cases through the literature.

Published in:

Antennas and Propagation, IEEE Transactions on  (Volume:59 ,  Issue: 7 )