By Topic

Minimum-Time Trajectory for Three-Wheeled Omnidirectional Mobile Robots Following a Bounded-Curvature Path With a Referenced Heading Profile

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Ki Bum Kim ; Department of Electrical Engineering , Korea Advanced Institute of Science and Technology, Daejeon, Korea ; Byung Kook Kim

The minimum-time trajectory planning problem for three-wheeled omnidirectional mobile robots (TOMRs) is solved based on the combined dynamic model of a mobile robot and dc motor actuators, under the constraint of bounded control inputs due to the battery voltage. We constrain that the bounded-curvature path based on a smooth road (which is described as a clothoid) be given for the translational motion of the TOMR and that the reference profile with respect to the path-length parameter be predetermined for the heading motion of the TOMR. The dynamics of the TOMR is transformed into normal and tangent spaces for motion analysis on the bounded-curvature path. We find out the time-optimality condition of the TOMR, which imposes that the input voltage vector of three motors should have at least one extreme component. Based on the optimality condition, we present a systematic way to construct the optimal control input vector. Finally, several examples are analyzed by the use of the proposed method.

Published in:

IEEE Transactions on Robotics  (Volume:27 ,  Issue: 4 )