By Topic

Polarimetric SAR images classification using collective network of binary classifiers

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Uhlmann, S. ; Dept. of Signal Process., Tampere Univ. of Technol., Tampere, Finland ; Kiranyaz, S. ; Gabbouj, M. ; Ince, T.

In this paper, we propose the application of collective network of (evolutionary) binary classifiers (CNBC) to address the problems of feature/class scalability and classifier evolution, to achieve a high classification performance over full polarimetric SAR images even though the training (ground truth) data may not be entirely accurate. The CNBC basically adopts a “Divide and Conquer” type approach by allocating an individual network of binary classifiers (NBCs) to discriminate each SAR image class and performing evolutionary search to find the optimal binary classifier (BC) in each NBC. Such design further allows dynamic class and SAR image feature scalability in such a way that the CNBC can gradually adapt itself to new features and classes with minimal effort. Experiments demonstrate the classification accuracy and efficiency of the proposed system over the fully polarimetric AIRSAR San Francisco Bay data set.

Published in:

Urban Remote Sensing Event (JURSE), 2011 Joint

Date of Conference:

11-13 April 2011