By Topic

Monitoring urban impervious surface area change using CBERS and HJ-1 remote sensing images

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Junshi Xia ; Key Lab. for Land Environ. & Disaster Monitoring of State Bur. of Surveying & Mapping, China Univ. of Min. & Technol., Xuzhou, China ; Peijun Du ; Huapeng Zhang ; Linshan Yuan

Impervious surface plays an important role in monitoring urbanization and related environmental changes. CBERS and HJ-1 satellite images were employed to impervious surface extraction. Xuzhou City, located in the northwestern of Jiangsu Province, China, was chosen as the case study area. Using linear spectral mixture model (LSMM) and multi-layer perception (MLP) neural network, all pixels were decomposed to the four fraction images representing the abundance of four endmembers: vegetation, high-albedo objects, low-albedo objects and soil. Then, the impervious surface area was derived by the combination of high- and low-albedo fraction images after removing the influence of water body. Furthermore, some high spatial resolution images were selected to validate the impervious surface estimation results of the two methods. Experimental results indicate that the accuracy of MLP neural network is higher than LSMM. By comparing the urban impervious surface area based on the MLP neural network from three remote sensing images, the change pattern of impervious surface area was studied. In the past years, the impervious surface has increased rapidly in Xuzhou City, especially in the northeast and southeast regions.

Published in:

Urban Remote Sensing Event (JURSE), 2011 Joint

Date of Conference:

11-13 April 2011