Cart (Loading....) | Create Account
Close category search window
 

Decode-and-Forward Two-Path Half-Duplex Relaying: Diversity-Multiplexing Tradeoff Analysis

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Wicaksana, H. ; Sch. of Electr. & Electron. Eng., Nanyang Technol. Univ., Singapore, Singapore ; Ting, S.H. ; Guan, Y.L. ; Xia, X.-G.

Two-path or successive relaying has recently emerged as a promising cooperative communication protocol to improve spectral efficiency in half-duplex relaying networks. In this paper, we consider decode-and-forward (DF) version of the two-path relaying protocol. We analyze the fundamental performance of this protocol in terms of the diversity-multiplexing tradeoff (DMT). We first derive the DMT for this protocol, where perfect decoding at the relays is assumed, and show that it approaches the 3 x 1 multiple-input single-output (MISO) DMT. We then remove the assumption of perfect decoding at the relays and derive the closed-form expression of the achievable DMT based on the relative distances between nodes. Specifically, we found that for sufficiently long transmission length, if the average source-relay SNR is at least 2.5 times (measured in dB) of other links, the 3 x 1 MISO DMT is achieved. Successive interference cancellation at the relays is also proposed to further improve the performance of the DMT.

Published in:

Communications, IEEE Transactions on  (Volume:59 ,  Issue: 7 )

Date of Publication:

July 2011

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.