By Topic

Performance Analysis of Energy Detection Based Spectrum Sensing with Unknown Primary Signal Arrival Time

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Jwo-Yuh Wu ; Dept. of Electr. Eng., Nat. Chiao Tung Univ., Hsinchu, Taiwan ; Chih-Hsiang Wang ; Tsang-Yi Wang

Spectrum sensing in next-generation wireless cognitive systems, such as overlay femtocell networks, is typically subject to timing misalignment between the primary transmitter and the secondary receiver. In this paper, we investigate the performance of the energy detector (ED) when the arrival time of the primary signal is modeled as a uniform random variable over the observation interval. The exact formula for the detection probability is derived and corroborated via numerical simulation. To further improve the detection performance, we propose a robust ED based on the Bayesian principle. Computer simulation confirms the effectiveness of the Bayesian based solution when compared with the conventional ED.

Published in:

Communications, IEEE Transactions on  (Volume:59 ,  Issue: 7 )