By Topic

Dynamic Resource Allocation in Multi-Service OFDMA Systems with Dynamic Queue Control

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Naveed UL Hassan ; GIK Institute of Engineering Sciences and Technology, Pakistan ; Mohamad Assaad

We consider the problem of resource allocation in downlink OFDMA systems for multi service and unknown environment. Due to users' mobility and intercell interference, the base station cannot predict neither the Signal to Noise Ratio (SNR) of each user in future time slots nor their probability distribution functions. In addition, the traffic is bursty in general with unknown arrival. The probability distribution functions of the SNR, channel state and traffic arrival/density are then unknown. Achieving a multi service Quality of Service (QoS) while optimizing the performance of the system (e.g. total throughput) is a hard and interesting task since it depends on the unknown future traffic and SNR values. In this paper we solve this problem by modeling the multiuser queuing system as a discrete time linear dynamic system. We develop a robust H controller to regulate the queues of different users. The queues and Packet Drop Rates (PDR) are controlled by proposing a minimum data rate according to the demanded service type of each user. The data rate vector proposed by the controller is then fed as a constraint to an instantaneous resource allocation framework. This instantaneous problem is formulated as a convex optimization problem for instantaneous subcarrier and power allocation decisions. Simulation results show small delays and better fairness among users.

Published in:

IEEE Transactions on Communications  (Volume:59 ,  Issue: 6 )