By Topic

A New Battery/UltraCapacitor Hybrid Energy Storage System for Electric, Hybrid, and Plug-In Hybrid Electric Vehicles

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Cao, J. ; Dept. of Electr. & Comput. Eng., Illinois Inst. of Technol., Chicago, IL, USA ; Emadi, A.

In this paper, a new battery/ultracapacitor hybrid energy storage system (HESS) is proposed for electric drive vehicles including electric, hybrid electric, and plug-in hybrid electric vehicles. Compared to the conventional HESS design, which uses a larger dc/dc converter to interface between the ultracapacitor and the battery/dc link to satisfy the real-time peak power demands, the proposed design uses a much smaller dc/dc converter working as a controlled energy pump to maintain the voltage of the ultracapacitor at a value higher than the battery voltage for the most city driving conditions. The battery will only provide power directly when the ultracapacitor voltage drops below the battery voltage. Therefore, a relatively constant load profile is created for the battery. In addition, the battery is not used to directly harvest energy from the regenerative braking; thus, the battery is isolated from frequent charges, which will increase the life of the battery. Simulation and experimental results are presented to verify the proposed system.

Published in:

Power Electronics, IEEE Transactions on  (Volume:27 ,  Issue: 1 )