By Topic

Novel Method for the Modeling and Control Investigation of Efficient Swimming for Robotic Fish

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Li Wen ; Robotic Institute in School of Mechanical Engineering and Automation, Beihang University, Beijing, China ; Tianmiao Wang ; Guanhao Wu ; Jianhong Liang
more authors

In this paper, analytical techniques and fuzzy logic method are applied to the dynamic modeling and efficient swimming control of a robotic fish. The bioinspired robotic fish, which follows an exact replica of a live mackerel (Scomber scombrus), is modeled by treating the undulating body and flapping tail independently using analytical methods. Comparing the results of simulations and experiments shows the feasibility of the dynamic model. Using this model, we found that the harmonic control of the Strouhal number and caudal fin angle of attack is a principal mechanism through which the robotic fish can obtain high thrust efficiency while swimming. The fuzzy control method, which is based on the knowledge of the robotic fish's dynamic behavior, has successfully utilized this principal mechanism. By comparing the thrust performance of the robotic fish with different control methods via simulation, we established that the fuzzy controller was able to achieve faster acceleration and smaller steady-state error than what could be achieved from an open-loop and conventional proportional-integral-derivative controller. The thrust efficiency during steady state was superior to that with conventional control methods. We also found that, when using the fuzzy control method, robotic fish can always swim near a “universal” Strouhal number that approximates to the swimming of live fish.

Published in:

IEEE Transactions on Industrial Electronics  (Volume:59 ,  Issue: 8 )