Cart (Loading....) | Create Account
Close category search window

Design of high birefringence and low confinement loss photonic crystal fibers with five rings hexagonal and octagonal symmetry air-holes in fiber cladding

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $31
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Kuang-Yu Yang ; Graduate Institute of Applied Physics, National Taiwan University, Taipei 10617, Taiwan ; Chau, Yuan-Fong ; Yao-Wei Huang ; Yeh, Hsiao-Yu
more authors

Your organization might have access to this article on the publisher's site. To check, click on this link: 

We present a new cladding design for high birefringence and low confinement loss photonic crystal fibers (PCFs) using a full-vector finite element method with anisotropic perfectly matched boundary layer. Six cases of PCFs are proposed for comparison. The proposed cladding in PCFs is composed of five rings of air-holes. Air-holes on the inner two rings are arranged in a hexagonal symmetry whereas, air-holes on the outer three rings are arranged in an octagonal symmetry in fused silica. Results show that suitable design air-holes on the inner two rings will significantly increase the birefringence, whereas, elliptical holes with major axis along x-axis on the outer three rings will provide strong confinement ability. The highest modal birefringence and lowest confinement loss of our proposed case five structure at the excitation wavelength of λ = 1550 nm can be achieved at a magnitude of 0.87 × 10-2 and less than 0.01 dB/km with only five rings of air-holes in fiber cladding.

Published in:

Journal of Applied Physics  (Volume:109 ,  Issue: 9 )

Date of Publication:

May 2011

Need Help?

IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.