By Topic

Vehicle Re-Identification With Dynamic Time Windows for Vehicle Passage Time Estimation

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Wei-Hua Lin ; Department of Systems and Industrial Engineering, the University of Arizona, Tucson, AZ, USA ; Daoqin Tong

A simple method for vehicle re-identification to generate vehicle passage times with loop data is developed. The method departs from other existing methods for vehicle passage time estimation: 1) It handles vehicle signatures one at a time and evaluates each vehicle observed only once. 2) The commonly used prespecified time window is replaced by a dynamic list of vehicles to be matched. 3) Vehicle matching is based on a combined estimation model that integrates spot traffic data with spatial vehicle data. The performance of the algorithm was tested with field data. Furthermore, to examine the effect of some of the assumptions on the performance of the algorithm, we compared the result with that obtained from an offline optimization model based on a spatial constraint that considers as many vehicles as possible for matching. The proposed method is particularly suitable for real-time applications since it can be easily implemented with little calibration effort and is computationally efficient.

Published in:

IEEE Transactions on Intelligent Transportation Systems  (Volume:12 ,  Issue: 4 )