By Topic

Experimental Investigation of a Cavity-Mode Resonator Using a Micromachined Two-Dimensional Silicon Phononic Crystal in a Square Lattice

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

7 Author(s)
Nan Wang ; Inst. of Microelectron., Agency for Sci., Technol. & Res., Singapore, Singapore ; Tsai, J.M. ; Hsiao, Fu-Li ; Soon, B.W.
more authors

A 2-D silicon phononic crystal (PnC) slab of a square array of cylindrical air holes in a 10-μm-thick freestanding silicon plate with line defects is characterized as a cavity-mode PnC resonator. A piezoelectric aluminum nitride (AlN) film is employed as the interdigital transducers to transmit and detect acoustic waves, thus making the whole microfabrication process CMOS compatible. Both the band structure of the PnC and the transmission spectrum of the proposed PnC resonator are analyzed and optimized using finite-element method. The measured quality factor (Q factor) of the microfabricated PnC resonator is over 1000 at its resonant frequency of 152.46 MHz. The proposed PnC resonator shows promising acoustic resonance characteristics for radio-frequency communications and sensing applications.

Published in:

Electron Device Letters, IEEE  (Volume:32 ,  Issue: 6 )