Cart (Loading....) | Create Account
Close category search window

An Adaptive Approach Based on KPCA and SVM for Real-Time Fault Diagnosis of HVCBs

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Jianjun Ni ; Jiangsu Key Lab. of Power Transm. & Distrib. Equip. Technol., Hohai Univ., Changzhou, China ; Chuanbiao Zhang ; Yang, Simon X.

High-voltage circuit breakers (HVCBs) play an important role in power systems, which can control and ensure the power grids are working properly. Real-time fault diagnosis of HVCBs is an essential issue for power systems. In this paper, a novel approach based on an adaptive kernel principal component analysis (KPCA) and support vector machine (SVM) is proposed for real-time fault diagnosis of HVCBs. In the proposed approach, a sample reduction algorithm based on a similarity degree function is proposed to analyze the similarity between the samples, and the redundant data can be eliminated. An adaptive KPCA method is used for the fault detection of HVCBs based on squared prediction error statistics. An SVM is used to carry out the fault recognition. Two spare data areas are set up for fault detection and recognition modeling. The data in the spare date areas are updated continuously, and the detection and recognition models are updated subsequently to improve the adaptivity of the diagnosis models and reduce the diagnosis error. The proposed approach can deal with various situations of the fault diagnosis for HVCBs. The experimental results show that the proposed approach is capable of detecting and recognizing the faults efficiently.

Published in:

Power Delivery, IEEE Transactions on  (Volume:26 ,  Issue: 3 )

Date of Publication:

July 2011

Need Help?

IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.