Cart (Loading....) | Create Account
Close category search window
 

Short-Wavelength Light Propagation in Graded Photonic Crystals

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Cassan, Eric ; Inst. d''Electron. Fondamentale, Univ. Paris-Sud, Orsay, France ; Khanh-Van Do ; Caer, C. ; Marris-Morini, D.
more authors

Control of electromagnetic fields using graded photonic crystals (GPhCs) is explored using equations of Hamiltonian optics. Contrary to previous works devoted to the long-wavelength regime enabling homogenization of photonic metamaterials, attention is paid to short-wavelength light propagation for the possible use of dispersive phenomena and light path reconfiguring with wavelength. An analytical description of the dispersion diagram of a square PhCs is extracted using plane wave expansion calculations, making possible the description of arbitrary light paths in 2-D GPhC structures and fast optimization to find the conditions suited to make light follow prescribed paths. The validity of the approach is validated by comparison with finite-difference time-domain simulation. For purpose and illustration, a wavelength demultiplexing structure with four channels and an overall surface of 60 μm × 60 μm is proposed. The described methodology is applicable to the generalized 2-D chirp of PhC lattice or filling ratio parameters for electromagnetic field shaping.

Published in:

Lightwave Technology, Journal of  (Volume:29 ,  Issue: 13 )

Date of Publication:

July1, 2011

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.