Cart (Loading....) | Create Account
Close category search window
 

Performance Analysis of Reinforcement Learning for Achieving Context Awareness and Intelligence in Mobile Cognitive Radio Networks

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Yau, K.-L.A. ; Sch. of Eng. & Comput. Sci., Victoria Univ. of Wellington, Wellington, New Zealand ; Komisarczuk, P. ; Teal, P.D.

Cognitive Radio (CR) is a key technology for improving the utilization level of the overall radio spectrum in wireless communications. It is able to sense and change its transmission and reception parameters adaptively according to spectrum availability in different spectrum channels. The Cognition Cycle (CC) is a state machine that is embodied in each CR host that defines the mechanisms related to achieving context awareness and intelligence including observation, learning, and action selection. The CC is the key element in the design of various applications in CR networks such as Dynamic Channel Selection (DCS), scheduling and congestion control. In this paper, Reinforcement Learning (RL) is employed to implement the CC in mobile CR networks. Previous works consider static networks with homogeneous channels. This paper analyzes the performance of RL as an approach to achieve context awareness and intelligence in regard to DCS in mobile CR networks with heterogeneous channels. Our contribution in this paper is to show whether RL is an appropriate tool to implement the CC. The results presented in this paper show that RL is a promising approach.

Published in:

Advanced Information Networking and Applications (AINA), 2011 IEEE International Conference on

Date of Conference:

22-25 March 2011

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.