By Topic

System-level energy-efficient scheduling for hard real-time embedded systems

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
Linwei Niu ; Department of Math and Computer Science, Claflin University, Orangeburg, SC 29115

In this paper, we present a system level dynamic scheduling algorithm to minimize the energy consumption by the DVS processor and multiple non-DVS peripheral devices in a hard real-time system. We show that the previous work which adopts the critical speed as the lower bound for scaling might not be most energy efficient when the energy overhead of shutting-down/waking-up is not negligible. Moreover, the widely used statically defined break even idle time might not be overall energy efficient due to its independence of job execution situations. In our approach, we first present an approach to enhance the computation of break even idle time dynamically. Then a dynamic scheduling approach is proposed in the management of speed determination and task preemption to reduce the energy consumption of the processor and devices. Compared with existing research, our approach can effectively reduce the system-level energy consumption for both CPU and peripheral devices.

Published in:

2011 Design, Automation & Test in Europe

Date of Conference:

14-18 March 2011