By Topic

An FPGA bridge preserving traffic quality of service for on-chip network-based systems

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Nejad, A.B. ; Delft Univ. of Technol., Delft, Netherlands ; Martinez, M.E. ; Goossens, K.

FPGA prototyping of recent large Systems on Chip (SoCs) is very challenging due to the resource limitation of a single FPGA. Moreover, having external access to SoCs for verification and debug purposes is essential. In this paper, we suggest to partition a network-on-chip (NoC) based system into smaller sub-systems each with their own NoC, and each of which is implemented on a separate FPGA board. Multiple SoC ASICs can be bridged in the same way. The scheme that interconnects the sub-systems should offer the application connections the required quality of service (QoS). In this paper, we investigate bridging schemes at different levels of the NoC protocol stack. Comparing the distinct design criteria for the proposed schemes, a bridge is designed. The bridge experiments show that it provides QoS in terms of bandwith and latency.

Published in:

Design, Automation & Test in Europe Conference & Exhibition (DATE), 2011

Date of Conference:

14-18 March 2011