Cart (Loading....) | Create Account
Close category search window
 

Where is the data? Why you cannot debate CPU vs. GPU performance without the answer

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Gregg, C. ; Dept. of Comput. Sci., Univ. of Virginia, Charlottesville, VA, USA ; Hazelwood, K.

General purpose GPU Computing (GPGPU) has taken off in the past few years, with great promises for increased desktop processing power due to the large number of fast computing cores on high-end graphics cards. Many publications have demonstrated phenomenal performance and have reported speedups as much as 1000× over code running on multi-core CPUs. Other studies have claimed that well-tuned CPU code reduces the performance gap significantly. We demonstrate that this important discussion is missing a key aspect, specifically the question of where in the system data resides, and the overhead to move the data to where it will be used, and back again if necessary. We have benchmarked a broad set of GPU kernels on a number of platforms with different GPUs and our results show that when memory transfer times are included, it can easily take between 2 to 50× longer to run a kernel than the GPU processing time alone. Therefore, it is necessary to either include memory transfer overhead when reporting GPU performance, or to explain why this is not relevant for the application in question. We suggest a taxonomy for future CPU/GPU comparisons, and we argue that this is not only germane for reporting performance, but is important to heterogeneous scheduling research in general.

Published in:

Performance Analysis of Systems and Software (ISPASS), 2011 IEEE International Symposium on

Date of Conference:

10-12 April 2011

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.