By Topic

On assessment of brain function adaptability in Open Learning systems using Neural Networks modeling (cognitive styles approach)

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
H. M. Mustafa ; Faculty of Engineering, Al-Baha University, KSA ; Saeed. M. Badran

The piece of research presents a conceptual overview on diverse cognitive styles reflections in adaptable Open Learning systems. The main goal of this approach is quantitative forecasting the performance of adaptable Open Learning (equivalently e-learning) Systems using cognitive Neural Network modelling. Furthermore, analysis of interactive two diverse learners' cognitive styles with a friendly adaptable teaching environment(e-courses material). Consequently, presented paper provides e-learning systems' designers with relevant guide for learning performance enhancement. Additionally, it supports e-learners in fulfilment of better learning achievements during face to face tutoring. Accordingly, quantitative analysis of e-learning adaptability performed herein, via assessment of matching between learning style preferences and the instructor's teaching style and/or e-courses material. Interestingly, application of two realistic cognitive models using Artificial Neural Network gives an opportunity to experience well assessment of adaptable e-learning features. Such as adaptability mismatching, adaptation time convergence, and individual differences of e-learners' adaptability.

Published in:

Communications and Information Technology (ICCIT), 2011 International Conference on

Date of Conference:

29-31 March 2011