By Topic

Design Exploration of Hybrid CMOS and Memristor Circuit by New Modified Nodal Analysis

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Wei Fei ; School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore ; Hao Yu ; Wei Zhang ; Kiat Seng Yeo

Design of hybrid circuits and systems based on CMOS and nano-device requires rethinking of fundamental circuit analysis to aid design exploration. Conventional circuit analysis with modified nodal analysis (MNA) cannot consider new nano-devices such as memristor together with the traditional CMOS devices. This paper has introduced a new MNA method with magnetic flux (Φ) as new state variable. New SPICE-like circuit simulator is thereby developed for the design of hybrid CMOS and memristor circuits. A number of CMOS and memristor-based designs are explored, such as oscillator, chaotic circuit, programmable logic, analog-learning circuit, and crossbar memory, where their functionality, performance, reliability and power can be efficiently verified by the newly developed simulator. Specifically, one new 3-D-crossbar architecture with diode-added memristor is also proposed to improve integration density and to avoid sneak path during read-write operation.

Published in:

IEEE Transactions on Very Large Scale Integration (VLSI) Systems  (Volume:20 ,  Issue: 6 )