By Topic

Development of High-Performance Grid-Connected Wind Energy Conversion System for Optimum Utilization of Variable Speed Wind Turbines

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Amin, M.M. ; Dept. of Electr. & Comput. Eng., Florida Int. Univ., Miami, FL, USA ; Mohammed, O.A.

This paper presents an improvement technique for the power quality of the electrical part of a wind generation system with a self-excited induction generator (SEIG) which aims to optimize the utilization of wind power injected into weak grids. To realize this goal, an uncontrolled rectifier-digitally controlled inverter system is proposed. The advantage of the proposed system is its simplicity due to fewer controlled switches which leads to less control complexity. It also provides full control of active and reactive power injected into the grid using a voltage source inverter (VSI) as a dynamic volt ampere reactive (VAR) compensator. A voltage oriented control (VOC) scheme is presented in order to control the energy to be injected into the grid. In an attempt to minimize the harmonics in the inverter current and voltage and to avoid poor power quality of the wind energy conversion system (WECS), an LC filter is inserted between VOC VSI and the grid. The proposed technique is implemented by a digital signal processor (DSP TMS320F240) to verify the validity of the proposed model and show its practical superiority in renewable energy applications.

Published in:

Sustainable Energy, IEEE Transactions on  (Volume:2 ,  Issue: 3 )