Cart (Loading....) | Create Account
Close category search window
 

Power Allocation Based on SEP Minimization in Two-Hop Decode-and-Forward Relay Networks

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Khabbazibasmenj, A. ; Dept. of Electr. & Comput. Eng., Univ. of Alberta, Edmonton, AB, Canada ; Vorobyov, S.A.

The problem of optimal power allocation among the relays in a two-hop decode-and-forward cooperative relay network with independent Rayleigh fading channels is considered. It is assumed that only the relays that decode the source message correctly contribute in data transmission. Moreover, only the knowledge of statistical channel state information is available. A new simple closed-form expression for the average symbol error probability is derived. Based on this expression, a new power allocation method that minimizes the average symbol error probability and takes into account the constraints on the total average power of all the relay nodes and maximum instant power of each relay node is developed. The corresponding optimization problem is shown to be a convex problem that can be solved using interior-point methods. However, an approximate closed-form solution is obtained and shown to be practically more appealing due to significant complexity reduction. The accuracy of the approximation is discussed. Moreover, the so obtained closed-form solution gives additional insights into the optimal power allocation problem. Simulation results confirm the improved performance of the proposed power allocation scheme as compared to other schemes.

Published in:

Signal Processing, IEEE Transactions on  (Volume:59 ,  Issue: 8 )

Date of Publication:

Aug. 2011

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.