By Topic

Image Deconvolution With Multi-Stage Convex Relaxation and Its Perceptual Evaluation

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Tingbo Hou ; Dept. of Comput. Sci., Stony Brook Univ. (SUNY Stony Brook), Stony Brook, NY, USA ; Sen Wang ; Hong Qin

This paper proposes a new image deconvolution method using multi-stage convex relaxation, and presents a metric for perceptual evaluation of deconvolution results. Recent work in image deconvolution addresses the deconvolution problem via minimization with non-convex regularization. Since all regularization terms in the objective function are non-convex, this problem can be well modeled and solved by multi-stage convex relaxation. This method, adopted from machine learning, iteratively refines the convex relaxation formulation using concave duality. The newly proposed deconvolution method has outstanding performance in noise removal and artifact control. A new metric, transduced contrast-to-distortion ratio (TCDR), is proposed based on a human vision system (HVS) model that simulates human responses to visual contrasts. It is sensitive to ringing and boundary artifacts, and very efficient to compute. We conduct comprehensive perceptual evaluation of image deconvolution using visual signal-to-noise ratio (VSNR) and TCDR. Experimental results of both synthetic and real data demonstrate that our method indeed improves the visual quality of deconvolution results with low distortions and artifacts.

Published in:

Image Processing, IEEE Transactions on  (Volume:20 ,  Issue: 12 )