By Topic

LMI-Based Stability Analysis for Fuzzy-Model-Based Control Systems Using Artificial T–S Fuzzy Model

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
H. K. Lam ; Division of Engineering, King's College London, London, U.K.

This paper investigates the stability of fuzzy-model-based (FMB) control systems. An alternative stability-analysis approach using an artificial fuzzy system based on the Lyapunov stability theory is proposed. To facilitate the stability analysis, the continuous membership functions of the Takagi-Sugeno (T-S) fuzzy model are represented by the staircase ones. With the nice property of the staircase membership functions, it turns the set of infinite number of linear-matrix-inequality (LMI) based stability conditions into a finite one. Furthermore, the staircase membership functions carrying system information can be brought to the stability conditions to relax the stability conditions. The stability of the original FMB control systems is guaranteed by the satisfaction of the LMI-based stability conditions. The proposed stability analysis is applied to the FMB control systems of which the T-S fuzzy model and fuzzy controller do not share the same premise membership functions and, thus, is able to enhance the design flexibility of the fuzzy controller. A simulation example is given to illustrate the merits of the proposed approach.

Published in:

IEEE Transactions on Fuzzy Systems  (Volume:19 ,  Issue: 3 )