Cart (Loading....) | Create Account
Close category search window
 

Optical properties of gold and aluminium nanoparticles for silicon solar cell applications

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $31
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Temple, T.L. ; Electronics and Computer Science, University of Southampton, Highfield, Southampton, SO17 1BJ, United Kingdom ; Bagnall, D.M.

Your organization might have access to this article on the publisher's site. To check, click on this link:http://dx.doi.org/+10.1063/1.3574657 

The optical properties of metal nanoparticles are explored as a function of lateral size, shape, aspect-ratio and metal type. Simulations based on the discrete dipole approximation are compared with experimental measurements of arrays of metal nanoparticles fabricated by electron-beam lithography. Careful selection of experimental parameters ensures minimization of far-field and near-field coupling, and inhomogeneous broadening, thus allowing comparison with single particle simulations. The optical properties of Au nanoparticles are compared with similar Al nanoparticles for each particle type. For solar cell light-trapping applications, we require metal nanoparticles that exhibit extinction peaks near the band-edge region of the absorbing material, as well as low absorption and large optical cross-sections. Al nanoparticles are shown to be of interest for amorphous silicon solar cells, but their applications for polycrystalline solar cells is limited by the presence of an interband region in the near-infrared. The opposite is found for Au nanoparticles, which feature an interband threshold region in the visible that makes their optical properties unsuitable for amorphous silicon but very suitable for crystalline and polycrystalline silicon solar cells.

Published in:

Journal of Applied Physics  (Volume:109 ,  Issue: 8 )

Date of Publication:

Apr 2011

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.