By Topic

Reduced minimum configuration fiber optic gyro for land navigation applications

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
S. Emge ; Andrew Corp., Orland Park, IL, USA ; S. Bennett ; R. Dyott ; J. Brunner
more authors

Further cost reduction of the fiber optic gyroscope is necessary to meet the economic requirements of land navigation systems. Previous concentration was on the reduction of the number of splices and component improvements in the open-loop minimum configuration. Now non-essential components and splices are eliminated. The source-detector coupler is not part of the Sagnac interferometer, and serves solely to direct light from the interferometer into the output photodetector. Many commercial laser diodes incorporate a back-facet photodetector to monitor laser intensity. The signal returned from the Sagnac traverses the laser, and can be detected at this photodetector. The gyro signal can be distinguished from the laser signal by the bias modulation applied in the interferometer. Configuring a gyro in this manner eliminates a directional coupler and the separate photodetector, as well as up to two fiber splices in an all-fiber gyroscope. A production, open-loop fiber optic gyroscope has been modified to demonstrate this principle. The gyroscope exhibits performance comparable to the conventional minimum configuration

Published in:

IEEE Aerospace and Electronic Systems Magazine  (Volume:12 ,  Issue: 4 )