By Topic

A novel prosthetic hand control approach based on genetic algorithm and wavelet transform features

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Karimi, M. ; Dept. of Electr. Eng., Islamic Azad Univ., Isfahan, Iran ; Pourghassem, H. ; Shahgholian, G.

This paper presents a novel approach to optimize pattern recognition system using genetic algorithm (GA) to identify the type of hand motion employing artificial neural networks (ANNs) with high performance and accuracy suited for practical implementations. To achieve this approach, electromyographic (EMG) signals were obtained from sixteen locations on the forearm of six subjects in ten hand motion classes. In the first step of feature extraction of forearm EMG signals, WPT is utilized to generate a wavelet decomposition tree from which WPT coefficients are extracted. In the second step, standard deviation of wavelet packet coefficients of EMG signals is considered as the feature vector for training purposes of the ANN. To improve the algorithm, GA was employed to optimize the algorithm in such a way that to determine the best values for “mother wavelet function”, “decomposition level of wavelet packet analysis”, and “number of neurons in hidden layer” concluded in a high-speed, precise two-layer ANN with a particularly small-sized structure. This proposed network with a small size can recognize ten hand motions with recognition accuracy of over 98% and also resulted in improvement of stability and reliability of the system for practical considerations.

Published in:

Signal Processing and its Applications (CSPA), 2011 IEEE 7th International Colloquium on

Date of Conference:

4-6 March 2011