Cart (Loading....) | Create Account
Close category search window
 

Comparison of Quantum Dots-in-a-Double-Well and Quantum Dots-in-a-Well Focal Plane Arrays in the Long-Wave Infrared

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

11 Author(s)
Andrews, J.R. ; Remote Sensing Div., Naval Res. Lab., Albuquerque, NM, USA ; Restaino, S.R. ; Teare, S. ; Sharma, Y.D.
more authors

Our previous research has reported on the development of the first generation of quantum dots-in-a-well (DWELL) focal plane arrays (FPAs), which are based on InAs quantum dots (QDs) embedded in an InGaAs well having GaAs barriers, which have demonstrated spectral tunability via an externally applied bias voltage. More recently, technologies in DWELL devices have been further advanced by embedding InAs QDs in InGaAs and GaAs double wells with AlGaAs barriers, leading to a less strained InAs/InGaAs/GaAs/AlGaAs heterostructure. These lower strain quantum dots-in-a-double-well devices exhibit lower dark current than the previous generation DWELL devices while still demonstrating spectral tunability. This paper compares two different configurations of double DWELL (DDWELL) FPAs to a previous generation DWELL detector and to a commercially available quantum well infrared photodetector (QWIP). All four devices are 320 × 256 pixel FPAs that have been fabricated and hybridized with an Indigo 9705 read-out integrated circuit. Radiometric characterization, average array responsivity, array uniformity and measured noise equivalent temperature difference for all four devices is computed and compared at 60 K. Overall, the DDWELL devices had lower noise equivalent temperature difference and higher uniformity than the first-generation DWELL devices, although the commercially available QWIP has demonstrated the best performance.

Published in:

Electron Devices, IEEE Transactions on  (Volume:58 ,  Issue: 7 )

Date of Publication:

July 2011

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.