By Topic

A One-Layer Recurrent Neural Network for Constrained Nonsmooth Optimization

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Qingshan Liu ; Sch. of Autom., Southeast Univ., Nanjing, China ; Jun Wang

This paper presents a novel one-layer recurrent neural network modeled by means of a differential inclusion for solving nonsmooth optimization problems, in which the number of neurons in the proposed neural network is the same as the number of decision variables of optimization problems. Compared with existing neural networks for nonsmooth optimization problems, the global convexity condition on the objective functions and constraints is relaxed, which allows the objective functions and constraints to be nonconvex. It is proven that the state variables of the proposed neural network are convergent to optimal solutions if a single design parameter in the model is larger than a derived lower bound. Numerical examples with simulation results substantiate the effectiveness and illustrate the characteristics of the proposed neural network.

Published in:

Systems, Man, and Cybernetics, Part B: Cybernetics, IEEE Transactions on  (Volume:41 ,  Issue: 5 )