Cart (Loading....) | Create Account
Close category search window
 

Time Series Investigation of Land Subsidence Using a Weighted Least Squares Adjustment Based on Image Mode Interferometric Data

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $31
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Akbari, V. ; Department of Physics and Technology, University of Tromsø, Norway ; Motagh, M. ; Motagh, M. ; Rajabi, M. A.
more authors

This study presents the weighted least squares method based on Interferometric Synthetic Aperture Radar (InSAR) images to retrieve spatial-temporal evolution of land subsidence in Mashhad Valley, northeast Iran. Using the analysis of a few interferograms covering the 2003-2005 period, Motagh et al (GJI 2006) presented a preliminary analysis of the subsidence in this area. Here we extend this study and use additional SAR data to retrieve time-dependent deformation in Mashhad Valley We utilize 17 SAR images acquired by the ENVISAT satellite in a descending orbit during Jun. 2004 - Nov. 2007, make 53 differential interferograms spanning different long- and short-term intervals, and do a time series analysis to extract deformation signals out of differential interferograms. Time series analysis suggests that the subsidence occurs within a northwest-southeast elongated elliptical shaped bowl along the axis of Mashhad valley. The maximum accumulated subsidence during 1260 days reaches about 86 cm, located northeast of Mashhad City. The comparison between InSAR time series results with continuous GPS station in the city of Tous, northeast of Mashhad, yields comparable results at the level of 1 cm.

Published in:

Synthetic Aperture Radar (EUSAR), 2010 8th European Conference on

Date of Conference:

7-10 June 2010

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.