By Topic

An Adaptive Method of Speckle Reduction and Feature Enhancement for SAR Images Based on Curvelet Transform and Particle Swarm Optimization

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Ying Li ; Sch. of Comput. Sci., Northwestern Polytech. Univ., Xi''an, China ; Hongli Gong ; Dagan Feng ; Zhang, Y.

This paper proposes an adaptive method based on the mirror-extended curvelet transform and the improved particle swarm optimization (PSO) algorithm, which reduce speckle noise and enhance edge features and contrast of synthetic aperture radar (SAR) images. First, an improved gain function, which integrates the speckle reduction with the feature enhancement, is introduced to nonlinearly shrink and stretch the curvelet coefficients. Then, a novel objective criterion for the quality of the despeckled and enhanced images is proposed in order to adaptively obtain the optimal parameters in the gain function. Finally, the PSO algorithm is employed as a global search strategy for the best despeckled and enhanced image. In order to increase the convergence speed and avoid the premature convergence, two further improvements for the classic PSO algorithm are presented. That is, a new learning scheme and a mutation operator are introduced. Experimental results demonstrate that the proposed method can efficiently reduce the speckle and enhance the edge features and the contrast of SAR images and outperforms the wavelet- and curvelet-based nonadaptive despeckling and enhancement methods.

Published in:

Geoscience and Remote Sensing, IEEE Transactions on  (Volume:49 ,  Issue: 8 )