By Topic

A Quantitative Analysis of Virtual Endmembers' Increased Impact on the Collinearity Effect in Spectral Unmixing

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

6 Author(s)

In the past decades, spectral unmixing has been studied for deriving the fractions of spectrally pure materials in a mixed pixel. However, limited attention has been given to the collinearity problem in spectral mixture analysis. In this paper, quantitative analysis and detailed simulations are provided, which show that the high correlation between the endmembers, including the virtual endmembers introduced in a nonlinear model, has a strong impact on unmixing errors through inflating the Gaussian noise. While distinctive spectra with low correlations are often selected as true endmembers, the virtual endmembers formed by their product terms can be highly correlated. It is found that a virtual-endmember-based nonlinear model generally suffers more from collinearity problems compared to linear models and may not perform as expected when the Gaussian noise is high, despite its higher modeling power. Experiments were conducted on a set of in situ measured data, and the results show that the linear mixture model performs better in 61.5% of the cases.

Published in:

Geoscience and Remote Sensing, IEEE Transactions on  (Volume:49 ,  Issue: 8 )