By Topic

Hydrostatic Pressure Effect on the Critical Current Density of First-Generation Bi-2223 Superconducting Wire

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

7 Author(s)
Fei Yen ; Appl. Supercond. Lab., Southwest Jiaotong Univ. (SWJTU), Chengdu, China ; Jing Li ; Donghui Jiang ; Shijun Zheng
more authors

A method to transport up to 180 A of current into the sample space of a pressure cell without causing thermal instabilities at 77 K was developed in order to study the critical current Ic of samples of first-generation Bi-2223 superconducting wire at different hydrostatic pressures. Ic was found to linearly decrease with increasing application of external pressure and was found to be irreversible upon release of pressure. The n-value of the voltage-current curves at different pressure was also found to systematically decrease. The decrease in Ic and the irreversibility effect is attributed to the deformation of the filamentary walls of the wire.

Published in:

Applied Superconductivity, IEEE Transactions on  (Volume:21 ,  Issue: 4 )