By Topic

A Fuzzy Association Rule-Based Classification Model for High-Dimensional Problems With Genetic Rule Selection and Lateral Tuning

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Jesús Alcala-Fdez ; Department of Computer Science and Artificial Intelligence, Research Center on Information and Communications Technology (CITIC-UGR), University of Granada, Granada, Spain ; Rafael Alcala ; Francisco Herrera

The inductive learning of fuzzy rule-based classification systems suffers from exponential growth of the fuzzy rule search space when the number of patterns and/or variables becomes high. This growth makes the learning process more difficult and, in most cases, it leads to problems of scalability (in terms of the time and memory consumed) and/or complexity (with respect to the number of rules obtained and the number of variables included in each rule). In this paper, we propose a fuzzy association rule-based classification method for high-dimensional problems, which is based on three stages to obtain an accurate and compact fuzzy rule-based classifier with a low computational cost. This method limits the order of the associations in the association rule extraction and considers the use of subgroup discovery, which is based on an improved weighted relative accuracy measure to preselect the most interesting rules before a genetic postprocessing process for rule selection and parameter tuning. The results that are obtained more than 26 real-world datasets of different sizes and with different numbers of variables demonstrate the effectiveness of the proposed approach.

Published in:

IEEE Transactions on Fuzzy Systems  (Volume:19 ,  Issue: 5 )