By Topic

Controlling Optical Signals Through Parametric Processes

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

6 Author(s)
Namiki, S. ; Nat. Inst. of Adv. Ind. Sci. & Technol., Tsukuba, Japan ; Kurosu, T. ; Tanizawa, K. ; Petit, S.
more authors

Parametric processes are capable of preserving the phase information of optical signals while their frequencies are converted. This feature, in conjunction with other basic features such as instantaneous and wideband operation, low noise, and high reliability, creates various unique functionalities in optical domain, invaluable for realizing future dynamic all optical networks that are scalable in capacity without energy crunch. This paper will review the fundamentals and proof of concept of the parametric devices that authors have been proposing as important building blocks for the future networks. The devices to be reviewed are parametric wavelength converters, parametric tunable dispersion compensators, parametric delay dispersion tuners, and wavelength-tunable optical parametric regenerators.

Published in:

Selected Topics in Quantum Electronics, IEEE Journal of  (Volume:18 ,  Issue: 2 )