By Topic

Frequency-Varying Spectral Shear Interferometry for Characterization of Extremely Short Attosecond Pulses

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Jiangfeng Zhu ; Dept. of Appl. Phys., Hokkaido Univ., Sapporo, Japan ; Shaobo Fang ; Yamane, K. ; Yamashita, M.

We theoretically investigate the complete amplitude and phase characterization of the isolated attosecond extreme ultraviolet (XUV) electric field by the spectral phase interferometry technique. Spectral shear needed for reconstruction of the spectral phase of the XUV pulse is prepared by modulating the driving optical pulse into two with different central wavelengths. We find that the spectral shear between the XUV pulses is almost linearly variable with the frequency, thus the phase reconstruction algorithm is modified by a non-uniformly sampled step concatenation. Numerical simulation using the harmonic spectrum and phase obtained from the saddle point analysis based on the widely used Lewenstein model indicates that this novel method is capable of measuring extremely short attosecond XUV pulses with several advantages owing to the all-optical apparatus: high efficiency and high time resolution, possibility of single-shot measurement, which provides a beneficial improvement to the current complicated photoelectron spectroscopic technique. We suggest that such a method is easy to implement, and propose a feasible experimental arrangement.

Published in:

Quantum Electronics, IEEE Journal of  (Volume:47 ,  Issue: 6 )