By Topic

Tactile-Data Classification of Contact Materials Using Computational Intelligence

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Sergio Decherchi ; Department of Biophysical and Electronic Engineering, University of Genoa, Italy ; Paolo Gastaldo ; Ravinder S. Dahiya ; Maurizio Valle
more authors

The two major components of a robotic tactile-sensing system are the tactile-sensing hardware at the lower level and the computational/software tools at the higher level. Focusing on the latter, this research assesses the suitability of computational-intelligence (CI) tools for tactile-data processing. In this context, this paper addresses the classification of sensed object material from the recorded raw tactile data. For this purpose, three CI paradigms, namely, the support-vector machine (SVM), regularized least square (RLS), and regularized extreme learning machine (RELM), have been employed, and their performance is compared for the said task. The comparative analysis shows that SVM provides the best tradeoff between classification accuracy and computational complexity of the classification algorithm. Experimental results indicate that the CI tools are effective in dealing with the challenging problem of material classification.

Published in:

IEEE Transactions on Robotics  (Volume:27 ,  Issue: 3 )