By Topic

Blind Image Quality Assessment: From Natural Scene Statistics to Perceptual Quality

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Moorthy, A.K. ; Dept. of Electr. & Comput. Eng., Univ. of Texas at Austin, Austin, TX, USA ; Bovik, A.C.

Our approach to blind image quality assessment (IQA) is based on the hypothesis that natural scenes possess certain statistical properties which are altered in the presence of distortion, rendering them un-natural; and that by characterizing this un-naturalness using scene statistics, one can identify the distortion afflicting the image and perform no-reference (NR) IQA. Based on this theory, we propose an (NR)/blind algorithm-the Distortion Identification-based Image Verity and INtegrity Evaluation (DIIVINE) index-that assesses the quality of a distorted image without need for a reference image. DIIVINE is based on a 2-stage framework involving distortion identification followed by distortion-specific quality assessment. DIIVINE is capable of assessing the quality of a distorted image across multiple distortion categories, as against most NR IQA algorithms that are distortion-specific in nature. DIIVINE is based on natural scene statistics which govern the behavior of natural images. In this paper, we detail the principles underlying DIIVINE, the statistical features extracted and their relevance to perception and thoroughly evaluate the algorithm on the popular LIVE IQA database. Further, we compare the performance of DIIVINE against leading full-reference (FR) IQA algorithms and demonstrate that DIIVINE is statistically superior to the often used measure of peak signal-to-noise ratio (PSNR) and statistically equivalent to the popular structural similarity index (SSIM). A software release of DIIVINE has been made available online: for public use and evaluation.

Published in:

Image Processing, IEEE Transactions on  (Volume:20 ,  Issue: 12 )