By Topic

Joint Registration and Super-Resolution With Omnidirectional Images

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Arican, Z. ; Signal Process. Lab. (LTS4), Ecole Polytech. Fed. de Lausanne (EPFL), Lausanne, Switzerland ; Frossard, P.

This paper addresses the reconstruction of high-resolution omnidirectional images from multiple low-resolution images with inexact registration. When omnidirectional images from low-resolution vision sensors can be uniquely mapped on the 2-sphere, such a reconstruction can be described as a transform-domain super-resolution problem in a spherical imaging framework. We describe how several spherical images with arbitrary rotations in the SO(3) rotation group contribute to the reconstruction of a high-resolution image with help of the spherical Fourier transform (SFT). As low-resolution images might not be perfectly registered in practice, the impact of inaccurate alignment on the transform coefficients is analyzed. We then cast the joint registration and super-resolution problem as a total least-squares norm minimization problem in the SFT domain. A l1-regularized total least-squares problem is considered and solved efficiently by interior point methods. Experiments with synthetic and natural images show that the proposed methods lead to effective reconstruction of high-resolution images even when large registration errors exist in the low-resolution images. The quality of the reconstructed images also increases rapidly with the number of low-resolution images, which demonstrates the benefits of the proposed solution in super-resolution schemes. Finally, we highlight the benefit of the additional regularization constraint that clearly leads to reduced noise and improved reconstruction quality.

Published in:

Image Processing, IEEE Transactions on  (Volume:20 ,  Issue: 11 )